Página:Tratado de Algebra Elementar.djvu/199

Wikisource, a biblioteca livre
Saltar para a navegação Saltar para a pesquisa


OU t>-—í<3.

2

Ora, o valor t—3 satisfaz á equação, mas não ao problema, porque este não admitte a solução zero: logo, sómente podemos fazer

1= 0, 1, 2 o que dá x— 1, 3, 5

e y= 18, 10, 5.

3.° Um" negociante tem duas especies de vinho: um a 25 réis o litro, e outro a 65 réis. Quanto deve tomar de cada um para formar vinho a 40 réis o litro?

Seja x o numero de litros de vinho de 25 réis, e y o numero de litros de vinho de 65 réis: será 25» o valor do primeiro, 65y o do segundo, e 25»+ 65z/ o valor da mistura. Além d'isto, como a quantidade da mistura é x + y e o seu preço é 40 réis, será também 40» + 40)/ o valor da mistura; e por isso teremos

25» + 65 y = 40» + 40 y,

ou 15» — 25j/ = 0, ou 3» — 5?/=0,

equação que temos de resolver em números inteiros e positivos.

Como uma solução inteira é » = 0, y=*0, as fórmulas geraes, que dão todas as soluções inteiras, são

a; =51, y = 3t;

e como o problema somente admitte soluções inteiras e positivas, pomos

<=1, 2, 3,____

o que dá »=5, 10, 15,....

y = 3, 6, 9,.. ..

| 4.° Resolução em números inteiros «le m equações a m+1 incógnitas

315. Uma equação do primeiro grau a m incógnitas ax + by + cz +.. . = h